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Multi-curve setting

The underlying of basis interest rate instruments, such as
I forward rate agreements,
I swaps,
I caplets,

are Euribor or Libor rates for some (future) interval [T ,T + δ], where
the tenor δ is typically 1D, 1M, 3M, 6M, 1Y etc.

For every δ ∈ {δ1, . . . , δm}, a (different) yield curve can be
bootstrapped from market instruments which only depend on the
Euribor rate with the corresponding tenor.

Before the financial crisis these yield curves coincided (more or less),
but nowadays they differ significantly due to credit and liquidity risk
of the interbank sector.

In particular, the Euribor cannot be considered risk-free any longer.

⇒ Term structure models for multiple yield curves are required.
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Goal of today’s talk

Multi-curve setting:
I Market interest rates
I Multiple yield curves and spreads

HJM framework for multiple curves: The aim is to model
simultaneously

I the term structure of the riskfree bond prices via instantaneous forward
rates (classical setting) and

I the term structure of certain spreads between yield curves
corresponding to different tenors.

Affine model specification

I ...as prototypical example of the HJM framework for multiple curves
I ...to provide (semi-)analytic pricing formulas for interest rate derivatives

Analysis of the relation to other multi-yield curve models
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Multi-curve setting Market interest rates

Eonia rate and overnight index swap (OIS) rates

ET := LT (T ,T + 1
360 ): Eonia rate at time T for borrowing 1 day

ahead
I effective overnight rate computed as a weighted average of all

overnight unsecured lending transactions in the interbank market,
initiated within the Euro area by the contributing panel banks.

Overnight index swap (OIS): OIS is a swap with a fixed leg versus a
floating leg where the floating rate is a geometric average of the
Eonia rates.

OIS rates are the market quotes for these swaps. They are available
for maturities ranging from 1 week to 60 years.
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Multi-curve setting Market interest rates

Eonia rate and overnight index swap (OIS) rates

OIS rates are assumed to be the best proxy for riskfree rates and
constitute a bootstrapping instruments to obtain (at time t) the
curve of

I riskfree bond prices : T 7→ B(t,T ).
I riskfree forward rates: T 7→ ft(T ) = −∂T log B(t,T ).
I OIS-FRA rates for [T ,T + δ]

T 7→ LD
t (T ,T + δ) =

1

δ

(
B(t,T )

B(t,T + δ)
− 1

)
.

Note that LD
t (T ,T + δ) is the analog of the pre-crisis (riskfree simply

compounded) forward Euribor rate for [T ,T + δ].
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Multi-curve setting Market interest rates

Euribor rates and FRA rates

LT (T ,T + δ): Euribor rate at time T with maturity T + δ:

I rate at which Euro interbank term deposits of length δ are being
offered by one prime bank to another,

I trimmed average rates submitted by panel of banks for 15 maturities
with corresponding tenor δ ∈ {1/52, 2/52, 3/52, 1/12, 2/12, . . . , 1}.

Lt(T ,T + δ): FRA rate at time t for [T ,T + δ]:

I rate K fixed at time t such that the value of the FRA contract, whose
payoff at time T + δ is LT (T ,T + δ)− K , has value 0:

Lt(T ,T + δ) = EQT+δ [LT (T ,T + δ)|Ft ] ,

where QT+δ denotes the T + δ forward measure with numeraire
B(t,T + δ).

I For each tenor δ, the term structure of the FRA rates
T 7→ Lt(T ,T + δ) is constructed from the market interest rate
instruments (swaps, etc.) linked to the Euribor with the corresponding
tenor.
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Multi-curve setting Market interest rates

FRA rates in the multi-curve setting

In the multi-curve setting, FRA rates are typically higher than riskfree
OIS-FRA rates:

Lt(T ,T + δ) > LD
t (T ,T + δ) =

1

δ

(
B(t,T )

B(t,T + δ)
− 1

)
=

1

δ

(
360δ∏
i=1

(1 +
1

360
Lt(Ti ,Ti + 1/360))− 1

)
,

where Lt(Ti ,Ti + 1/360) denotes the Eonia FRA rate.

This is related to the fact that the composition of the EURIBOR panel is
updated over time to include only creditworthy banks.

I The rates obtained from OIS reflect the average credit quality of a
periodically refreshed pool of creditworthy banks.

I EURIBOR rates incorporate the risk that the average credit quality of
an initial set of creditworthy banks will deteriorate over the term of the
loan.
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Multi-curve setting Yield curves and spreads

Yield curves

The term structure of interest rates can be represented by different
“codebooks”, e.g., term structure of...

I bond prices,
I zero coupon yields,
I simply compounded forward rates (FRA rates) or
I instantaneous forward rates, etc.

The standard “codebook” for riskfree interest rates is the instantaneous
forward curve.

T 7→ ft(T ) = −∂T log B(t,T ).

For risky curves, the bootstrapping standard and closest to market data are
the FRA curves

T 7→ Lt(T ,T + δ)

(one curve for each tenor δ).
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Multi-curve setting Yield curves and spreads

Spreads between FRA and OIS-FRA rates

FRA rate spreads: Quantities to compare yield curves

I Additive and multiplicative spreads between FRA rates and OIS-FRA
rates:

Lt(T ,T + δ)− LD
t (T ,T + δ);

Lt(T ,T + δ)

LD
t (T ,T + δ)

for different δ; OIS Eonia - Euribor spread at the short end t = T .
I Multiplicative spread between riskfree and risky forward prices:

Sδ(t,T ) :=
1 + δLt(T ,T + δ)

1 + δLD
t (T ,T + δ)

=
Bδ(t,T )B(t,T + δ)

Bδ(t,T + δ)B(t,T )

where the (artificial) risky bond prices are defined via
Bδ(t,T )

Bδ(t,T+δ)
= (1 + δLt(T ,T + δ)).
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Multi-curve setting Yield curves and spreads

OIS Eonia-Euribor spreads

Additive OIS Eonia - Euribor spread LT (T ,T + δ)− LD
T (T ,T + δ)

from Jan. 2007 to September 2013 for δ = 1/12, 3/12, 6/12, 1:
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Multi-curve setting Yield curves and spreads

Term structure of FRA spreads

Spreads of OIS-FRA rates vs. FRA rates
LT0(T ,T + δ)− LD

T0
(T ,T + δ) at T0 = 11.12.12 for

δ = 1/12, 3/12, 6/12, 1:
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Multi-curve setting Yield curves and spreads

Literature

Post-crisis interest rate market: Moreni and Pallavicini, 2010, Henrard
2007, Fujii et al. 2010, Chibane and Sheldon 2009, Ametrano and
Bianchetti 2009, etc.

Short rate approach: Kijima et al. 2009, Kenyon 2010, Filipović and
Trolle 2012, etc.

LIBOR Market model approach: Mercurio 2010, Grbac et al. 2013,
etc.

HJM approach: Moreni and Pallavicini 2010, Pallavini and Tarenghi,
2010, Fujii et al. 2009, Crepey et al. 2013, Chiarella et al. 2010, etc.
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Modeling Approach

Which quantities should be modeled?

Model the whole term structure of riskfree and risky rates rather than
only modeling the short rate and some spot spreads.

The curves which are the easiest to obtain from market data are
T 7→ Lt(T ,T + δ) (short maturities are directly quoted). The
classical HJM setting provides a term structure model for
T 7→ ft(T ) ≈ Lt(T ,T + 1

360 ). ⇒ Model for T 7→ Lt(T ,T + δ) is
required.

Possibility to model either Lt(T ,T + δ) or certain spreads between
Lt(T ,T + δ) and LD

t (T ,T + δ). ⇒ Model for spreads to guarantee
Lt(T ,T + δ) ≥ LD

t (T ,T + δ) and an ordering of the spreads for
different δ if desired.
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Modeling Approach

Which quantities should be modeled?

Which kind of spreads? Criterium: Analytic tractability for pricing
caps and floors

I Additive and multiplicative spreads: distribution of the sum/product of
the spread with LD

T (T ,T + δ) is required (difficulty as for basket or
spread options).

I Multiplicative spreads Sδ(t,T ) between riskfree and risky forward

prices: distribution of the product of (Sδ(t,T ), B(t,T )
B(t,T+δ) ) is required.

⇒ Model T 7→ Sδ(t,T ) for every tenor δ together with the classical HJM
model for T 7→ ft(T ).
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Modeling Approach General HJM framework

HJM framework revisited

Stochastic basis: (Ω,F , (Ft),Q).

Consider a family of positive semimartingales
{(S(t,T ))t∈[0,T ],T ≥ 0} such that (S(t, t))t≥0 is also a (positive)
semimartingale.

Supposing differentiability of T 7→ log (S(t,T )) a.s., we can represent
S(t,T ) by

S(t,T ) = eZt+
∫ T
t ηt(s)ds ,

where Zt := log(S(t, t)) and ηt(T ) := ∂T log (S(t,T )).

Modeling the family {(S(t,T ))t∈[0,T ],T ≥ 0} thus amounts to
modeling (Zt)t∈[0,T ] and {(ηt(T ))t∈[0,T ],T ≥ 0}.
We call Z the log-spot and ηt(T ) generalized forward rate.

Advantage: Modeling is split into modeling the spot quantity and a
generalized forward rate.
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Modeling Approach General HJM framework

HJM-type models

Definition (cf. Kallsen -Krühner 2013, for option surface models)

A quintuple (Z , η0, α, σ,X ) is called HJM-type model for a family of positive
semimartingales {(S(t,T ))t∈[0,T ],T ≥ 0} if

1 (X ,Z ) is a d + 1-dimensional Itô-semimartingale (absolutely continuous
characteristics)

2 η0: R+ → R is measurable and
∫ T

0
|η0(t)|dt <∞ for any T ∈ R+,

3 (ω, t,T ) 7→ αt(T )(ω) and (ω, t,T ) 7→ σt(T )(ω) are P ×B(R+) measurable
R-and Rd -valued processes and satisfy certain integrability conditions,

4 the generalized forward rate ηt(T ) has a regular decomposition given by

ηt(T ) = η0(T ) +

∫ t

0

αs(T )ds +

∫ t

0

σs(T )dXs ,

5 {(S(t,T ))t∈[0,T ],T ≥ 0} satisfies S(t,T ) = eZt+
∫ T
t
ηt(s)ds , in particular

S(t, t) = eZt .
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Modeling Approach General HJM framework

Remark on HJM type models

(S(t,T ))t∈[0,T ] often corresponds to the evolution of the price of a
derivative with maturity T and is thus a (local) martingale under
some equivalent measure.

The martingale property of S(t,T )t∈[0,T ] can be characterized in
terms of a drift condition on α and a consistency condition. For this
we need the notion of the local exponent of a semimartingale.
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Modeling Approach General HJM framework

Local exponents of semimartingales

Definition

Let X be an Rd -valued semimartingale and β an Rd -valued predictable
X -integrable process. A predictable R-valued process (ΨX

t (β))t is called
local exponent of X at β (or Laplace cumulant process) if(

exp

(∫ t

0
βsdXs −

∫ t

0
ΨX

s (β)ds

))
t

is a local martingale. We denote by UX the set of processes β such that
the local exponent exists.
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Modeling Approach General HJM framework

Local exponents of semimartingales

Proposition

Let X be an Rd -valued semimartingale with differential characteristics
(b, c ,K ). Let β be an Rd -valued predictable X -integrable process. Then
there is an equivalence between

β ∈ UX ,∫ ·
0 βsdXs is an exponentially special semimartingale, that is e

∫ ·
0 βsdXs is

a special semimartingale,∫ t
0

∫
β>s ξ>1 eβ

>
s ξKs(dξ)ds <∞ a.s for all t > 0.

In this case

ΨX
t (βt) = β>t bt +

1

2
β>t ctβt +

∫
(eβ

>
t ξ − 1− β>t χ(ξ))Kt(dξ).
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Modeling Approach General HJM framework

HJM framework - drift and consistency condition

Theorem (cf. Kallsen and Krühner 2013)

For an HJM-type model the following conditions are equivalent:

1 (S(t,T ))t are martingales for all T ≥ 0.

2 The so-called conditional expectation hypothesis holds:

E
[
eZT |Ft

]
= eZt+

∫ T
t
ηt(s)ds

3 The following conditions are satisfied:

I martingale property of(
exp

(
Zt +

∫ t

0

(∫ T

s
σs(u)du

)
dXs −

∫ t

0
ΨZ ,X

s

(
1,
∫ T

s
σs(u)du

)
ds
))

t∈[0,T ]

I consistency condition: ΨZ
t (1) = ηt−(t),

I HJM drift condition:
∫ T

t
αt(s)ds = ΨZ

t (1)−ΨZ ,X
t

(
1,
∫ T

t
σt(s)ds

)
.
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Modeling Approach General HJM framework

HJM framework - Remarks

(S(t,T ))t are local martingales if and only if the drift and the consistency
condition is satisfied together with the local the martingale property of(

exp

(
Zt +

∫ t

0

(∫ T

s

σs(u)du

)
dXs −

∫ t

0

ΨZ ,X
s

(
1,

∫ T

s

σs(u)du

)
ds

))
t∈[0,T ]

.

(1)

The latter condition is equivalent to Zt +
∫ t

0

(∫ T

s
σs(u)du

)
dXs being an

exponentially special semimartingale.

A sufficient condition for (1) being a true martingale is

sup
t≤T

E

[
exp

(
1

2

(
1,

∫ T

t

σ>t (u)du

)
cZ ,Xt

(
1,

∫ T

t

σ>t (u)du

)>)

× exp

(∫ (
e(1,

∫ T
t σ>

t (u)du)ξ
(

1−
(

1,

∫ T

t

σ>t (u)du

)
ξ

)
+ 1

)
KZ ,X

t (dξ)

)]
<∞.
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Modeling Approach HJM framework for the riskfree bond prices

HJM framework for the riskfree bond prices

Definition

A bond price model is a quintuple (B, f0, α̃, σ̃,X ), where

the bank account B satisfies Bt = e
∫ t

0
rsds , with short rate r ,

X is a d-dimensional Itô-semimartingale,

f0: R+ → R is measurable and
∫ T

0
|f0(t)|dt <∞ for any T ∈ R+,

(ω, t,T ) 7→ α̃t(T )(ω) and (ω, t,T ) 7→ σ̃t(T )(ω) are P ×B(R+) measurable
R and Rd -valued processes and satisfy certain integrability conditions,

the forward rate process ft(T ) is defined by

ft(T ) = f0(T ) +
∫ t

0
α̃s(T )ds +

∫ t

0
σ̃s(T )dXs ,

the bond prices {(B(t,T ))t∈[0,T ],T ≥ 0} satisfy B(t,T ) = e−
∫ T
t

ft(s)ds ., in
particular B(t, t) = 1.

An bond price model is called risk neutral if the discounted bond prices{
(B(t,T )

Bt
)t∈[0,T ]

}
are martingales.
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Modeling Approach HJM framework for the riskfree bond prices

HJM framework for the riskfree bond prices

Proposition (cf. J. Teichmann’s presentation on the CNKK-approach)

A bond price model can be identified with an HJM-type model (Z , η0, α, σ,X ) for

the family of discounted bond prices
{

(B(t,T )
Bt

)t∈[0,T ]

}
by setting η0 = −f0,

α = −α̃, σ = −σ̃ (thus ηt(t) = −ft(T )) and Zt = − log Bt = −
∫ t

0
rsds.

Moreover, the following assertions are equivalent:

The bond price model is risk neutral, i.e., (B(t,T )
Bt

)t∈[0,T ] are martingales for
all T ≥ 0.

E
[
eZT |Ft

]
= eZt+

∫ T
t
ηt(s)ds ⇔ E

[
Bt

BT
|Ft

]
= e−

∫ T
t

ft(s)ds .

The following conditions hold:

I martingale property of(
exp

(∫ t

0

(
−
∫ T

s
σ̃s(u)du

)
dXs −

∫ t

0
ΨX

s

(
−
∫ T

s
σ̃s(u)du

)
ds
))

t
,

I Consistency condition: ΨZ
t (1) = −rt = −ft(t),

I HJM drift condition:
∫ T

t
α̃t(s)ds = ΨX

t (−
∫ T

t
σ̃t(s)ds).
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Modeling Approach HJM framework for the riskfree bond prices

Remark

The introduction of a bank account is actually not necessary.

One could also take the terminal bond B(t,T ∗) as numeraire. Then(
B(t,T )
B(t,T∗)

)
t∈[0,T ]

should be (local) martingales for all T ≤ T ∗ under

the T ∗-forward measure.

Similarly we get an HJM-type model (Z , η0, α, σ,X ) for the family{
( B(t,T )
B(t,T∗) )t∈[0,T ],T ≤ T ∗

}
by setting η0 = −f0, α = −α̃, σ = −σ̃

(thus ηt(t) = −ft(T )) and

Zt = − log(B(t,T ∗)) =

∫ T∗

t
ft(s)ds.

A similar drift and consistency condition assure the local martingale

property of
(

B(t,T )
B(t,T∗)

)
t∈[0,T ]

under the T ∗-forward measure.
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Modeling Approach Modeling the term structure of spreads

Modeling the term structure of spreads

D = {δ1, δ2, . . . , δm}: family of tenors for some m ∈ N with
δ1 < δ2 < . . . < δm

Aim: Model the term structure of multiplicative spreads between
riskfree and risky forward prices T 7→ Sδ(t,T ) given by

Sδi (t,T ) =
1 + δiLt(T ,T + δi )

1 + δiLD
t (T ,T + δi )

for all δi ∈ {δ1, . . . , δm}.
HJM type models where

Sδi (t,T ) = eZ
δi
t +

∫ T
t ηit(s)ds

are particularly suitable because we can model the observed log spot
spreads Z δi

t = log(Sδi (t, t)) and the forward spread rates
ηit(T ) = ∂T (log(Sδi (t,T ))) separately.
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Modeling Approach Modeling the term structure of spreads

OIS Eonia-Euribor spread

Logarithm of the multiplicative spread Sδ(t, t) from Jan. 2007 to
September 2013 for δ = 1/12, 3/12, 6/12, 1:
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Modeling Approach Modeling the term structure of spreads

Modeling the log spot spreads

Due to a high correlation between the different spreads, principal
component analysis (PCA) suggests to model the different log spot
spreads by a common lower dimensional process Y taking values in
Rn with n < m (typically n = 1 or 2 is sufficient) such that

Z δi
t = u>i Yt ,

where u1, . . . , um are some vector in Rn obtained from PCA.

Ordered spot spreads 1 ≤ Sδ1(t, t) ≤ · · · ≤ Sδm(t, t) can be obtained
by taking a process Y which takes values is some cone C ⊂ Rn and
ui ∈ C ∗ such that 0 < u1 ≺ u2 ≺ · · · ≺ um.
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Modeling Approach Modeling the term structure of spreads

Term structure of multiplicative spreads

Term structure of multiplicative spreads Sδ(T0,T ) for δ = 3/12, 6/12
at T0 = 4.8.2013
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Modeling Approach Modeling the term structure of spreads

Forward spread rates η

Forward spread rates T 7→ ηT0(T ) for δ = 3/12, 6/12 at
T0 = 4.8.2013
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Modeling Approach Modeling the term structure of spreads

Modeling the term structure of T 7→ S δi (t,T ):

(Bt): bank account

B(t,T ): riskfree bond prices
B(t,T )

Bt
: discounted bond prices are martingales

Lemma

For every δ ∈ D and T > 0, (Sδ(t,T ))t∈[0,T ] is a QT -martingale, where

QT denotes the T -forward measure whose density process is given by
dQ>
dQ |Ft = B(t,T )

BtB(0,T ) .

In order to model {(Sδi (t,T ))t ,T ≥ 0, δi ∈ D}, the following
conditions should thus be satisfied:

I (Sδi (t,T ))t∈[0,T ] are QT -martingales,
I Sδi (t,T ) ≥ 1 for all t ≤ T and T > 0,
I Sδ1 (t,T ) ≤ · · · ≤ Sδm(t,T ) for all t ≤ T and T > 0.
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Modeling Approach Modeling the term structure of spreads

Modeling the term structure of T 7→ S δi (t,T ):

Since Sδi (t,T ) = eZ
δi
t +

∫ T
t ηit(s)ds the QT -martingale property implies

the conditional expectation hypothesis under QT

Sδi (t,T ) = EQT

[
eZ

δi
T |Ft

]
= EQT

[
eu
>
i YT |Ft

]
= eu

>
i Yt+

∫ T
t ηit(s)ds .

We automatically have 1 ≤ Sδ1(t,T ) ≤ · · · ≤ Sδm(t,T ) for every t
and T ≥ t if the process Y takes values is some cone C ⊂ Rn and
ui ∈ C ∗ such that 0 < u1 ≺ u2 ≺ · · · ≺ um, since

Sδi (t,T ) = EQT

[
eu
>
i Y
∣∣∣Ft ] ≤ EQT

[
eu
>
j Y
∣∣∣Ft ] = Sδj (t,T ).
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Modeling Approach Modeling the term structure of spreads

HJM-type multi-curve models

Definition

Let the number of different tenors be m = |D|. We call a model
consisting of

I an Rd+n+1-valued semimartingale (X ,Y ,B),
I vectors u1, . . . , um in Rn,
I functions f0, η1

0 , . . . , η
m
0 ,

I processes α̃, α1, . . . , αm and σ̃, σ1, . . . , σm

a HJM-type multi-curve model for {(B(t,T ))t∈[0,T ],T ≥ 0} and

{(Sδ(t,T ))t∈[0,T ],T ≥ 0, δ ∈ D} if
I (B, f0, α̃, σ̃,X ) is a bond price model and
I for every i ∈ {1, . . . ,m}, (u>i Y , ηi0, α

i , σi ,X ) is a HJM-type models for
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Modeling Approach Modeling the term structure of spreads
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Modeling Approach Modeling the term structure of spreads

Multi-curve models - drift and consistency condition

Theorem

For a multi-curve model the following conditions are equivalent:

The multi-curve model is risk neutral.

The following conditional expectation hypotheses hold:

EQ

[
Bt

BT
|Ft

]
= e−

∫ T
t ft(s)ds

EQT

[
eu
>
i YT |Ft

]
= eu

>
i Yt+

∫ T
t ηit(s)ds , for all i ∈ {1, . . . ,m}.
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Modeling Approach Modeling the term structure of spreads

Multi-curve models - drift and consistency condition

Theorem (continued)

The following conditions are satisfied:

I martingale property (under Q) of

F
(

exp
(∫ t

0

(
−
∫ T

s
σ̃s(u)du

)
dXs −

∫ t

0
ΨX

s

(
−
∫ T

s
σ̃s(u)du

)
ds
))

t
and

F
(

exp
(
u>i Yt +

∫ t

0

(∫ T

s
(σi

s(u)− σ̃s(u))du
)
dXs+

−
∫ t

0
ΨY ,X

s

(
ui ,
∫ T

s
(σi

s(u)− σ̃s(u))du
)
ds
))

t
,

I Consistency conditions: rt = ft(t) and ΨY
t (ui ) = ηit−(t).

I HJM drift conditions:
F

∫ T

t
α̃t(s)ds = ΨX

t

(
−
∫ T

t
σ̃t(s)ds

)
F ∫ T

t

αi
t(s)ds = ΨY

t (ui )−ΨY ,X

(
ui ,

∫ T

t

(σi
t(s)ds − σ̃t(s))ds

)
+

+ ΨX
t

(
−
∫ T

t

σ̃t(s)ds

)
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Modeling Approach Modeling the term structure of spreads

Construction of multi-curve models

Aim: Specify a risk neutral multi-curve model via (f0, η
i
0, σ̃, σ

i ,X ,Y )
such that

I Condition (iii) (martingale property, consistency and HJM drift
condition) of the last theorem is satisfied,

I the spreads are ordered 1 ≤ Sδ1 (t,T ) ≤ · · · ≤ Sδm(t,T ) for every t
and T ≥ t (without requiring that the forward spread curves
T 7→ ηit(T ) are ordered)

The second aim can be achieved by taking a process Y which takes
values is some cone C ⊂ Rn and ui ∈ C ∗ such that
0 < u1 ≺ u2 ≺ · · · ≺ um,

The more difficult part is to satisfy the consistency condition

ΨY
t (ui ) = ηit−(t).
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Modeling Approach Modeling the term structure of spreads

Construction of multi-curve models

In order to specify the dynamics ηi we need to define the drift αi as

αi
t(T ) = −∂TΨY ,X

(
ui ,

∫ T

t

(σi
t(s)ds − σ̃t(s))ds

)
+∂TΨX

t

(
−
∫ T

t

σ̃t(s)ds

)
.

For this we can decompose Y into its dependent part Y || relative to X and
a locally independent part Y⊥ = Y − Y ||. To define αi it is sufficient to
specify only the dependent part Y || because

ΨY ,X = ΨY ||,X + ΨY⊥,0.

Therefore we can specify (ηi0, σ̃, σ
i ,X ,Y ||) such that Y || lies in C and(

exp
(

u>i Y
||
t +

∫ t

0

(∫ T

s
(σi

s(u)− σ̃s(u))du
)

dXs+

−
∫ t

0
ΨY ||,X

s

(
ui ,
∫ T

s
(σi

s(u)− σ̃s(u))du
)

ds
))

t
is a martingale.
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Modeling Approach Modeling the term structure of spreads

Construction of multi-curve models

Supposing existence and uniqueness for ηi , we then have to construct
Y⊥ with state space C , locally independent of (Y ||,X ) such that

ΨY⊥
t (ui ) = ηit(t)−ΨY ||

t (ui ).

for all i .

Possible solutions:
I If m = n, cY⊥

and KY⊥
could be fixed and the drift chosen

accordingly ⇒ Problem: Y⊥ should be C -valued.
I If m > n, adjusting only the drift does not work any more.
I Adjusting the compensator of the jumps allows for highest flexibility,

however one has to find a way to guarantee that Y⊥ ∈ C .
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Modeling Approach Modeling the term structure of spreads

Existence of multi-curve models

It is possible to construct multi-curve models such that all
requirements of Condition (iii) (drift and consistency condition and
martingale property) are satisfied. Thus the spreads Sδi (t,T ) are QT

martingales.

Moreover, the process Y = Y || + Y can be specified to take values in
C , whence the spreads are ordered.
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Affine model specification Model setup

Definition of an affine Markov process

V : n-dimensional Euclidean vector space with scalar product 〈·, ·〉;

D: closed subset of V

U =
{

u ∈ V + iV
∣∣ e〈u,x〉 is a bounded function on D

}
;

Definition (Affine Markov process)

A time-homogeneous Markov process X relative to some filtration (Ft) and with
state space D is called affine if

1 it is stochastically continuous, that is, the transition kernels satisfy
lims→t ps(x , ·) = pt(x , ·) weakly on D for every t ≥ 0 and x ∈ D, and

2 its Fourier-Laplace transform has exponential-affine dependence on the
initial state. This means that there exist functions φ : R+ × U → C and
ψ : R+ × U → V + iV such that for all x ∈ D and (t, u) ∈ R+ × U

Ex

[
e〈u,Xt〉

]
=

∫
D

e〈u,ξ〉pt(x , dξ) = eφ(t,u)+〈ψ(t,u),x〉.
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Affine model specification Model setup

Properties of affine processes

Theorem (Keller-Ressel, Teichmann, Schachermayer 2011; C. and
Teichmann 2012)

Every affine process X is regular, that is, for every u ∈ U the derivatives

F (u) :=
∂φ(t, u)

∂t

∣∣∣∣∣
t=0

, R(u) :=
∂ψ(t, u)

∂t

∣∣∣∣∣
t=0

exist and are continuous in u. Moreover, F and R are of Lévy Kinthchine form
and φ and ψ satisfy the so-called generalized Riccati equations.

Lemma

Consider an affine process (X ,Y ) on some mixed state space D1 × D2 with scalar
product 〈·, ·〉1 and 〈·, ·〉2 such that the characteristics of Y only depend on X .
Then

E
[
e〈u,Xt〉1+〈v ,Yt〉2

]
= eφ(t,u,v)+〈ψ(t,u,v),x〉1+〈v ,y〉2 .
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Affine model specification Model setup

Affine multi-curve model

Definition
An affine multi-curve model is defined via

an affine process (X ,Y ,Z) on some state space D ⊂ Rd+n+1 satisfying certain
exponential moment conditions with the property that the characteristics of (Y ,Z)
only depend on X , in particular Zt = −

∫ t

0
rsds = −

∫ t

0
l + 〈λ,Xs〉ds such that

the bank account satisfies Bt = e−Zt = e
∫ t

0 rsds ,

the bond prices satisfy

B(t,T ) = E
[
Bt

BT

∣∣∣Ft

]
= E

[
eZT−Zt |Ft

]
= eφ(T−t,0,0,1)+〈ψ(T−t,0,0,1),Xt〉,

for each i , the spreads Sδi (t,T ) satisfy

Sδi (t,T ) :=
E
[
eZT +u>i YT |Ft

]
E [eZT |Ft ]

= eu
>
i Yt+φ(T−t,0,ui ,1)−φ(T−t,0,0,1)+〈ψ(T−t,0,ui ,1)−ψ(T−t,0,0,1),Xt〉
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Affine model specification Properties of affine multi-curve models

Relation to HJM-type multi-curve models

Proposition

Every affine multi-curve model is a risk neutral HJM-type multi-curve
model where

the driving process is X ,

the bank account is given by Bt = e−Zt

the log spot spread is given by log(Sδi (t, t)) = u>i Yt and

the forward rate and forward spread rates are given by

ft(T ) = −F (ψ(T − t, 0, 0, 1), 0, 1)− 〈R(ψ(T − t, 0, 0, 1), 0, 1),Xt〉
ηit(T ) = F (ψ(T − t, 0, ui , 1), ui , 1)− F (ψ(T − t, 0, 0, 1), 0, 1)

+ 〈R(ψ(T − t, 0, ui , 1), ui , 1)− R(ψ(T − t, 0, 0, 1), 0, 1),Xt〉
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Affine model specification Properties of affine multi-curve models

Pricing of interest rate derivatives

Pricing of FRA contracts, swaps and basis swaps amounts to compute
riskfree bond prices and the following quantity

B(t,T )Sδi (t,T ) = EQ[eu
>
i YT +ZT−Zt |Ft ]

= eφ(T−t,0,ui ,1)+〈ψ(T−t,0,ui ,1),Xt〉−Zt ,

which simply means solving the Riccati equations for φ and ψ.

Pricing of caplets can be achieved via Fourier methods as for pricing
put options in affine models.
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Relation to other models

Relation to other models

Lognormal LIBOR market models
I Similarly as in the original BGM article, we can obtain a lognormal

LIBOR market model for Lt(T ,T + δ) within the above framework.
I This provides a theoretical justification in the multi-curve setting for

the market practice to price caplets by means of Black’s formula.

Multi-curve HJM models

I The HJM multiple-curve models recently proposed by Crepey et al.
and Moreni and Pallavicini can also be recovered within our framework.
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Relation to other models

Conclusion

Our model approach is based on the

I ... a (standard) HJM-model for the riskfree bonds,
I ..an HJM-type model for multiplicative spreads between riskfree and

risky forward prices
I ... affine model specification as prototypical example, where pricing of

interest rate derivatives can be achieved easily

Work in progress, Outlook
I Statistical analysis of the dependence and correlation structure between

the different curves and spreads
I Calibration
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Thank you for your attention!
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