An HJM approach for multiple yield curves

Christa Cuchiero (based on joint work with Claudio Fontana and Alessandro Gnoatto)

TU Wien

Stochastic processes and their statistics in finance, October 31^{st} , 2013

- The underlying of basis interest rate instruments, such as
 - ► forward rate agreements,
 - swaps,
 - caplets,

are Euribor or Libor rates for some (future) interval $[T, T + \delta]$, where the tenor δ is typically 1D, 1M, 3M, 6M, 1Y etc.

- The underlying of basis interest rate instruments, such as
 - ► forward rate agreements,
 - swaps,
 - ► caplets,

are Euribor or Libor rates for some (future) interval [T, $T + \delta$], where the tenor δ is typically 1D, 1M, 3M, 6M, 1Y etc.

 For every δ ∈ {δ₁,...,δ_m}, a (different) yield curve can be bootstrapped from market instruments which only depend on the Euribor rate with the corresponding tenor.

- The underlying of basis interest rate instruments, such as
 - ► forward rate agreements,
 - swaps,
 - ► caplets,

are Euribor or Libor rates for some (future) interval $[T, T + \delta]$, where the tenor δ is typically 1D, 1M, 3M, 6M, 1Y etc.

- For every δ ∈ {δ₁,...,δ_m}, a (different) yield curve can be bootstrapped from market instruments which only depend on the Euribor rate with the corresponding tenor.
- Before the financial crisis these yield curves coincided (more or less), but nowadays they differ significantly due to credit and liquidity risk of the interbank sector.

- The underlying of basis interest rate instruments, such as
 - ► forward rate agreements,
 - swaps,
 - ► caplets,

are Euribor or Libor rates for some (future) interval $[T, T + \delta]$, where the tenor δ is typically 1D, 1M, 3M, 6M, 1Y etc.

- For every δ ∈ {δ₁,...,δ_m}, a (different) yield curve can be bootstrapped from market instruments which only depend on the Euribor rate with the corresponding tenor.
- Before the financial crisis these yield curves coincided (more or less), but nowadays they differ significantly due to credit and liquidity risk of the interbank sector.
- In particular, the Euribor cannot be considered risk-free any longer.
- \Rightarrow Term structure models for multiple yield curves are required.

• Multi-curve setting:

- Market interest rates
- Multiple yield curves and spreads

- Multi-curve setting:
 - Market interest rates
 - Multiple yield curves and spreads
- HJM framework for multiple curves: The aim is to model simultaneously
 - the term structure of the riskfree bond prices via instantaneous forward rates (classical setting) and
 - the term structure of certain spreads between yield curves corresponding to different tenors.

- Multi-curve setting:
 - Market interest rates
 - Multiple yield curves and spreads
- HJM framework for multiple curves: The aim is to model simultaneously
 - the term structure of the riskfree bond prices via instantaneous forward rates (classical setting) and
 - the term structure of certain spreads between yield curves corresponding to different tenors.
- Affine model specification
 - …as prototypical example of the HJM framework for multiple curves
 - ...to provide (semi-)analytic pricing formulas for interest rate derivatives

- Multi-curve setting:
 - Market interest rates
 - Multiple yield curves and spreads
- HJM framework for multiple curves: The aim is to model simultaneously
 - the term structure of the riskfree bond prices via instantaneous forward rates (classical setting) and
 - the term structure of certain spreads between yield curves corresponding to different tenors.
- Affine model specification
 - …as prototypical example of the HJM framework for multiple curves
 - …to provide (semi-)analytic pricing formulas for interest rate derivatives
- Analysis of the relation to other multi-yield curve models

- $E_T := L_T(T, T + \frac{1}{360})$: Eonia rate at time T for borrowing 1 day ahead
 - effective overnight rate computed as a weighted average of all overnight unsecured lending transactions in the interbank market, initiated within the Euro area by the contributing panel banks.

- $E_T := L_T(T, T + \frac{1}{360})$: Eonia rate at time T for borrowing 1 day ahead
 - effective overnight rate computed as a weighted average of all overnight unsecured lending transactions in the interbank market, initiated within the Euro area by the contributing panel banks.
- Overnight index swap (OIS): OIS is a swap with a fixed leg versus a floating leg where the floating rate is a geometric average of the Eonia rates.

- $E_T := L_T(T, T + \frac{1}{360})$: Eonia rate at time T for borrowing 1 day ahead
 - effective overnight rate computed as a weighted average of all overnight unsecured lending transactions in the interbank market, initiated within the Euro area by the contributing panel banks.
- Overnight index swap (OIS): OIS is a swap with a fixed leg versus a floating leg where the floating rate is a geometric average of the Eonia rates.
- OIS rates are the market quotes for these swaps. They are available for maturities ranging from 1 week to 60 years.

• OIS rates are assumed to be the best proxy for riskfree rates and constitute a bootstrapping instruments to obtain (at time t) the curve of

- OIS rates are assumed to be the best proxy for riskfree rates and constitute a bootstrapping instruments to obtain (at time t) the curve of
 - riskfree bond prices : $T \mapsto B(t, T)$.
 - riskfree forward rates: $T \mapsto f_t(T) = -\partial_T \log B(t, T)$.
 - OIS-FRA rates for $[T, T + \delta]$

$$T\mapsto L^D_t(T,T+\delta)=rac{1}{\delta}\left(rac{B(t,T)}{B(t,T+\delta)}-1
ight).$$

Note that $L_t^D(T, T + \delta)$ is the analog of the pre-crisis (riskfree simply compounded) forward Euribor rate for $[T, T + \delta]$.

Euribor rates and FRA rates

• $L_T(T, T + \delta)$: Euribor rate at time T with maturity $T + \delta$:

- \blacktriangleright rate at which Euro interbank term deposits of length δ are being offered by one prime bank to another,
- ► trimmed average rates submitted by panel of banks for 15 maturities with corresponding tenor δ ∈ {1/52, 2/52, 3/52, 1/12, 2/12, ..., 1}.

Euribor rates and FRA rates

- $L_T(T, T + \delta)$: Euribor rate at time T with maturity $T + \delta$:
 - \blacktriangleright rate at which Euro interbank term deposits of length δ are being offered by one prime bank to another,
 - ► trimmed average rates submitted by panel of banks for 15 maturities with corresponding tenor δ ∈ {1/52, 2/52, 3/52, 1/12, 2/12, ..., 1}.
- $L_t(T, T + \delta)$: FRA rate at time t for $[T, T + \delta]$:
 - ▶ rate K fixed at time t such that the value of the FRA contract, whose payoff at time $T + \delta$ is $L_T(T, T + \delta) K$, has value 0:

 $L_t(T, T+\delta) = \mathbb{E}_{\mathbb{Q}^{T+\delta}} \left[L_T(T, T+\delta) | \mathcal{F}_t \right],$

- where $\mathbb{Q}^{T+\delta}$ denotes the $T + \delta$ forward measure with numeraire $B(t, T + \delta)$.
- For each tenor δ, the term structure of the FRA rates T → L_t(T, T + δ) is constructed from the market interest rate instruments (swaps, etc.) linked to the Euribor with the corresponding tenor.

FRA rates in the multi-curve setting

• In the multi-curve setting, FRA rates are typically higher than riskfree OIS-FRA rates:

$$egin{split} L_t(\mathcal{T},\mathcal{T}+\delta) > L^D_t(\mathcal{T},\mathcal{T}+\delta) &= rac{1}{\delta}\left(rac{B(t,\mathcal{T})}{B(t,\mathcal{T}+\delta)}-1
ight) \ &= rac{1}{\delta}\left(\prod_{i=1}^{360\delta}(1+rac{1}{360}L_t(\mathcal{T}_i,\mathcal{T}_i+1/360))-1
ight), \end{split}$$

where $L_t(T_i, T_i + 1/360)$ denotes the Eonia FRA rate.

FRA rates in the multi-curve setting

• In the multi-curve setting, FRA rates are typically higher than riskfree OIS-FRA rates:

$$egin{split} \mathcal{L}_t(\mathcal{T},\mathcal{T}+\delta) > \mathcal{L}_t^D(\mathcal{T},\mathcal{T}+\delta) &= rac{1}{\delta}\left(rac{B(t,\mathcal{T})}{B(t,\mathcal{T}+\delta)}-1
ight) \ &= rac{1}{\delta}\left(\prod_{i=1}^{360\delta}(1+rac{1}{360}\mathcal{L}_t(\mathcal{T}_i,\mathcal{T}_i+1/360))-1
ight), \end{split}$$

where $L_t(T_i, T_i + 1/360)$ denotes the Eonia FRA rate.

- This is related to the fact that the composition of the EURIBOR panel is updated over time to include only creditworthy banks.
 - The rates obtained from OIS reflect the average credit quality of a periodically refreshed pool of creditworthy banks.
 - EURIBOR rates incorporate the risk that the average credit quality of an initial set of creditworthy banks will deteriorate over the term of the loan.

• The term structure of interest rates can be represented by different "codebooks", e.g., term structure of...

- The term structure of interest rates can be represented by different "codebooks", e.g., term structure of...
 - bond prices,
 - zero coupon yields,
 - simply compounded forward rates (FRA rates) or
 - instantaneous forward rates, etc.

- The term structure of interest rates can be represented by different "codebooks", e.g., term structure of...
 - bond prices,
 - zero coupon yields,
 - simply compounded forward rates (FRA rates) or
 - instantaneous forward rates, etc.
- The standard "codebook" for riskfree interest rates is the instantaneous forward curve.

 $T \mapsto f_t(T) = -\partial_T \log B(t, T).$

- The term structure of interest rates can be represented by different "codebooks", e.g., term structure of...
 - bond prices,
 - zero coupon yields,
 - simply compounded forward rates (FRA rates) or
 - instantaneous forward rates, etc.
- The standard "codebook" for riskfree interest rates is the instantaneous forward curve.

 $T\mapsto f_t(T)=-\partial_T\log B(t,T).$

• For risky curves, the bootstrapping standard and closest to market data are the FRA curves

 $T \mapsto L_t(T, T + \delta)$

(one curve for each tenor δ).

Spreads between FRA and OIS-FRA rates

• FRA rate spreads: Quantities to compare yield curves

Spreads between FRA and OIS-FRA rates

• FRA rate spreads: Quantities to compare yield curves

Additive and multiplicative spreads between FRA rates and OIS-FRA rates:

$$L_t(T, T+\delta) - L_t^D(T, T+\delta); \quad \frac{L_t(T, T+\delta)}{L_t^D(T, T+\delta)}$$

for different δ ; OIS Eonia - Euribor spread at the short end t = T.

Spreads between FRA and OIS-FRA rates

• FRA rate spreads: Quantities to compare yield curves

Additive and multiplicative spreads between FRA rates and OIS-FRA rates:

$$L_t(T, T+\delta) - L_t^D(T, T+\delta); \quad \frac{L_t(T, T+\delta)}{L_t^D(T, T+\delta)}$$

for different δ ; OIS Eonia - Euribor spread at the short end t = T.

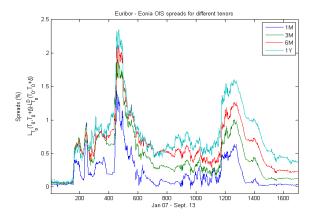
Multiplicative spread between riskfree and risky forward prices:

$$S^{\delta}(t,T) := \frac{1 + \delta L_t(T,T+\delta)}{1 + \delta L_t^D(T,T+\delta)} = \frac{B^{\delta}(t,T)B(t,T+\delta)}{B^{\delta}(t,T+\delta)B(t,T)}$$

where the (artificial) risky bond prices are defined via $\frac{B^{\delta}(t,T)}{B^{\delta}(t,T+\delta)} = (1 + \delta L_t(T, T + \delta)).$

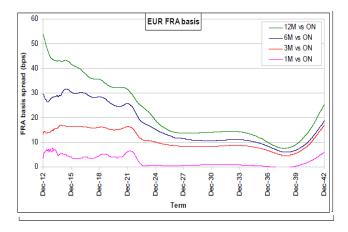
OIS Eonia-Euribor spreads

• Additive OIS Eonia - Euribor spread $L_T(T, T + \delta) - L_T^D(T, T + \delta)$ from Jan. 2007 to September 2013 for $\delta = 1/12, 3/12, 6/12, 1$:



Term structure of FRA spreads

• Spreads of OIS-FRA rates vs. FRA rates $L_{T_0}(T, T + \delta) - L_{T_0}^D(T, T + \delta)$ at $T_0 = 11.12.12$ for $\delta = 1/12, 3/12, 6/12, 1$:



Literature

- Post-crisis interest rate market: Moreni and Pallavicini, 2010, Henrard 2007, Fujii et al. 2010, Chibane and Sheldon 2009, Ametrano and Bianchetti 2009, etc.
- Short rate approach: Kijima et al. 2009, Kenyon 2010, Filipović and Trolle 2012, etc.
- LIBOR Market model approach: Mercurio 2010, Grbac et al. 2013, etc.
- HJM approach: Moreni and Pallavicini 2010, Pallavini and Tarenghi, 2010, Fujii et al. 2009, Crepey et al. 2013, Chiarella et al. 2010, etc.

• Model the whole term structure of riskfree and risky rates rather than only modeling the short rate and some spot spreads.

- Model the whole term structure of riskfree and risky rates rather than only modeling the short rate and some spot spreads.
- The curves which are the easiest to obtain from market data are $T \mapsto L_t(T, T + \delta)$ (short maturities are directly quoted). The classical HJM setting provides a term structure model for $T \mapsto f_t(T) \approx L_t(T, T + \frac{1}{360})$. \Rightarrow Model for $T \mapsto L_t(T, T + \delta)$ is required.

- Model the whole term structure of riskfree and risky rates rather than only modeling the short rate and some spot spreads.
- The curves which are the easiest to obtain from market data are $T \mapsto L_t(T, T + \delta)$ (short maturities are directly quoted). The classical HJM setting provides a term structure model for $T \mapsto f_t(T) \approx L_t(T, T + \frac{1}{360})$. \Rightarrow Model for $T \mapsto L_t(T, T + \delta)$ is required.
- Possibility to model either $L_t(T, T + \delta)$ or certain spreads between $L_t(T, T + \delta)$ and $L_t^D(T, T + \delta)$. \Rightarrow Model for spreads to guarantee $L_t(T, T + \delta) \ge L_t^D(T, T + \delta)$ and an ordering of the spreads for different δ if desired.

• Which kind of spreads? Criterium: Analytic tractability for pricing caps and floors

- Which kind of spreads? Criterium: Analytic tractability for pricing caps and floors
 - Additive and multiplicative spreads: distribution of the sum/product of the spread with L^D_T(T, T + δ) is required (difficulty as for basket or spread options).

- Which kind of spreads? Criterium: Analytic tractability for pricing caps and floors
 - Additive and multiplicative spreads: distribution of the sum/product of the spread with L^D_T(T, T + δ) is required (difficulty as for basket or spread options).
 - Multiplicative spreads $S^{\delta}(t, T)$ between riskfree and risky forward prices: distribution of the product of $(S^{\delta}(t, T), \frac{B(t, T)}{B(t, T+\delta)})$ is required.

- Which kind of spreads? Criterium: Analytic tractability for pricing caps and floors
 - Additive and multiplicative spreads: distribution of the sum/product of the spread with L^D_T(T, T + δ) is required (difficulty as for basket or spread options).
 - ► Multiplicative spreads S^δ(t, T) between riskfree and risky forward prices: distribution of the product of (S^δ(t, T), B(t,T)/B(t,T+δ)) is required.

 \Rightarrow Model $T \mapsto S^{\delta}(t, T)$ for every tenor δ together with the classical HJM model for $T \mapsto f_t(T)$.

HJM framework revisited

• Stochastic basis: $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q})$.

• Stochastic basis: $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q})$.

• Consider a family of positive semimartingales $\{(S(t, T))_{t \in [0, T]}, T \ge 0\}$ such that $(S(t, t))_{t \ge 0}$ is also a (positive) semimartingale.

- Stochastic basis: $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q})$.
- Consider a family of positive semimartingales $\{(S(t, T))_{t \in [0,T]}, T \ge 0\}$ such that $(S(t, t))_{t \ge 0}$ is also a (positive) semimartingale.
- Supposing differentiability of $T \mapsto \log(S(t, T))$ a.s., we can represent S(t, T) by

$$S(t,T)=e^{Z_t+\int_t^T\eta_t(s)ds},$$

where $Z_t := \log(S(t, t))$ and $\eta_t(T) := \partial_T \log(S(t, T))$.

- Stochastic basis: $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q})$.
- Consider a family of positive semimartingales $\{(S(t,T))_{t\in[0,T]}, T \ge 0\}$ such that $(S(t,t))_{t\ge 0}$ is also a (positive) semimartingale.
- Supposing differentiability of $T \mapsto \log(S(t, T))$ a.s., we can represent S(t, T) by

$$S(t,T)=e^{Z_t+\int_t^T\eta_t(s)ds},$$

where $Z_t := \log(S(t, t))$ and $\eta_t(T) := \partial_T \log(S(t, T))$.

• Modeling the family $\{(S(t, T))_{t \in [0,T]}, T \ge 0\}$ thus amounts to modeling $(Z_t)_{t \in [0,T]}$ and $\{(\eta_t(T))_{t \in [0,T]}, T \ge 0\}$.

- Stochastic basis: $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q})$.
- Consider a family of positive semimartingales $\{(S(t, T))_{t \in [0,T]}, T \ge 0\}$ such that $(S(t, t))_{t \ge 0}$ is also a (positive) semimartingale.
- Supposing differentiability of $T \mapsto \log(S(t, T))$ a.s., we can represent S(t, T) by

$$S(t,T)=e^{Z_t+\int_t^T\eta_t(s)ds},$$

where $Z_t := \log(S(t, t))$ and $\eta_t(T) := \partial_T \log(S(t, T))$.

- Modeling the family $\{(S(t, T))_{t \in [0,T]}, T \ge 0\}$ thus amounts to modeling $(Z_t)_{t \in [0,T]}$ and $\{(\eta_t(T))_{t \in [0,T]}, T \ge 0\}$.
- We call Z the log-spot and $\eta_t(T)$ generalized forward rate.

- Stochastic basis: $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q})$.
- Consider a family of positive semimartingales $\{(S(t,T))_{t\in[0,T]}, T \ge 0\}$ such that $(S(t,t))_{t\ge 0}$ is also a (positive) semimartingale.
- Supposing differentiability of $T \mapsto \log(S(t, T))$ a.s., we can represent S(t, T) by

$$S(t,T)=e^{Z_t+\int_t^T\eta_t(s)ds},$$

where $Z_t := \log(S(t, t))$ and $\eta_t(T) := \partial_T \log(S(t, T))$.

- Modeling the family $\{(S(t, T))_{t \in [0,T]}, T \ge 0\}$ thus amounts to modeling $(Z_t)_{t \in [0,T]}$ and $\{(\eta_t(T))_{t \in [0,T]}, T \ge 0\}$.
- We call Z the log-spot and $\eta_t(T)$ generalized forward rate.
- Advantage: Modeling is split into modeling the spot quantity and a generalized forward rate.

HJM-type models

Definition (cf. Kallsen -Krühner 2013, for option surface models)

A quintuple $(Z, \eta_0, \alpha, \sigma, X)$ is called HJM-type model for a family of positive semimartingales $\{(S(t, T))_{t \in [0, T]}, T \ge 0\}$ if

- (X, Z) is a d + 1-dimensional Itô-semimartingale (absolutely continuous characteristics)
- 2 $\eta_0: \mathbb{R}_+ \to \mathbb{R}$ is measurable and $\int_0^T |\eta_0(t)| dt < \infty$ for any $T \in \mathbb{R}_+$,
- ③ (ω, t, T) → α_t(T)(ω) and (ω, t, T) → σ_t(T)(ω) are P × B(ℝ₊) measurable ℝ-and ℝ^d-valued processes and satisfy certain integrability conditions,
- **(**) the generalized forward rate $\eta_t(T)$ has a regular decomposition given by

$$\eta_t(T) = \eta_0(T) + \int_0^t \alpha_s(T) ds + \int_0^t \sigma_s(T) dX_s,$$

§ {(S(t, T))_{t∈[0,T]}, T ≥ 0} satisfies S(t, T) = e^{Z_t+∫^T_t η_t(s)ds}, in particular S(t, t) = e^{Z_t}.

Remark on HJM type models

- (S(t, T))_{t∈[0,T]} often corresponds to the evolution of the price of a derivative with maturity T and is thus a (local) martingale under some equivalent measure.
- The martingale property of $S(t, T)_{t \in [0, T]}$ can be characterized in terms of a drift condition on α and a consistency condition. For this we need the notion of the local exponent of a semimartingale.

Local exponents of semimartingales

Definition

Let X be an \mathbb{R}^d -valued semimartingale and β an \mathbb{R}^d -valued predictable X-integrable process. A predictable \mathbb{R} -valued process $(\Psi_t^X(\beta))_t$ is called local exponent of X at β (or Laplace cumulant process) if

$$\left(\exp\left(\int_0^t \beta_s dX_s - \int_0^t \Psi_s^X(\beta) ds\right)\right)_t$$

is a local martingale. We denote by \mathcal{U}^X the set of processes β such that the local exponent exists.

Local exponents of semimartingales

Proposition

Let X be an \mathbb{R}^d -valued semimartingale with differential characteristics (b, c, K). Let β be an \mathbb{R}^d -valued predictable X-integrable process. Then there is an equivalence between

- $\beta \in \mathcal{U}^X$,
- $\int_0^{\cdot} \beta_s dX_s$ is an exponentially special semimartingale, that is $e^{\int_0^{\cdot} \beta_s dX_s}$ is a special semimartingale,
- $\int_0^t \int_{\beta_s^\top \xi > 1} e^{\beta_s^\top \xi} K_s(d\xi) ds < \infty$ a.s for all t > 0. In this case

 $\Psi_t^{\mathsf{X}}(\beta_t) = \beta_t^{\top} b_t + \frac{1}{2} \beta_t^{\top} c_t \beta_t + \int (e^{\beta_t^{\top} \xi} - 1 - \beta_t^{\top} \chi(\xi)) \mathcal{K}_t(d\xi).$

HJM framework - drift and consistency condition

Theorem (cf. Kallsen and Krühner 2013)

For an HJM-type model the following conditions are equivalent:

- () $(S(t,T))_t$ are martingales for all $T \ge 0$.
- 2 The so-called conditional expectation hypothesis holds:

$$\mathbb{E}\left[e^{Z_{T}}|\mathcal{F}_{t}\right] = e^{Z_{t} + \int_{t}^{T} \eta_{t}(s)ds}$$

3 The following conditions are satisfied:

- martingale property of $\left(\exp\left(Z_t + \int_0^t \left(\int_s^T \sigma_s(u) du\right) dX_s \int_0^t \Psi_s^{Z,X} \left(1, \int_s^T \sigma_s(u) du\right) ds\right)\right)_{t \in [0,T]}$ consistency condition: $\Psi_t^Z(1) = \eta_{t-}(t),$
- HJM drift condition: $\int_t^T \alpha_t(s) ds = \Psi_t^Z(1) \Psi_t^{Z,X}\left(1, \int_t^T \sigma_t(s) ds\right).$

HJM framework - Remarks

• $(S(t, T))_t$ are local martingales if and only if the drift and the consistency condition is satisfied together with the local the martingale property of

$$\left(\exp\left(Z_t+\int_0^t\left(\int_s^T\sigma_s(u)du\right)dX_s-\int_0^t\Psi_s^{Z,X}\left(1,\int_s^T\sigma_s(u)du\right)ds\right)\right)_{t\in[0,T]}.$$
(1)

The latter condition is equivalent to $Z_t + \int_0^t \left(\int_s^T \sigma_s(u) du \right) dX_s$ being an exponentially special semimartingale.

• A sufficient condition for (1) being a true martingale is

$$\begin{split} \sup_{t \leq T} \mathbb{E} \left[\exp\left(\frac{1}{2} \left(1, \int_{t}^{T} \sigma_{t}^{\top}(u) du\right) c_{t}^{Z,X} \left(1, \int_{t}^{T} \sigma_{t}^{\top}(u) du\right)^{\top} \right) \\ \times \exp\left(\int \left(e^{\left(1, \int_{t}^{T} \sigma_{t}^{\top}(u) du\right)\xi} \left(1 - \left(1, \int_{t}^{T} \sigma_{t}^{\top}(u) du\right)\xi\right) + 1\right) K_{t}^{Z,X}(d\xi)\right) \right] < \infty. \end{split}$$

HJM framework for the riskfree bond prices

Definition

- A bond price model is a quintuple $(B, f_0, \tilde{\alpha}, \tilde{\sigma}, X)$, where
 - the bank account B satisfies $B_t = e^{\int_0^t r_s ds}$, with short rate r,
 - X is a d-dimensional Itô-semimartingale,
 - $f_0: \mathbb{R}_+ \to \mathbb{R}$ is measurable and $\int_0^T |f_0(t)| dt < \infty$ for any $T \in \mathbb{R}_+$,
 - $(\omega, t, T) \mapsto \widetilde{\alpha}_t(T)(\omega)$ and $(\omega, t, T) \mapsto \widetilde{\sigma}_t(T)(\omega)$ are $\mathcal{P} \times \mathcal{B}(\mathbb{R}_+)$ measurable \mathbb{R} and \mathbb{R}^d -valued processes and satisfy certain integrability conditions,
 - the forward rate process $f_t(T)$ is defined by $f_t(T) = f_0(T) + \int_0^t \widetilde{\alpha}_s(T) ds + \int_0^t \widetilde{\sigma}_s(T) dX_s,$
 - the bond prices $\{(B(t, T))_{t \in [0,T]}, T \ge 0\}$ satisfy $B(t, T) = e^{-\int_t^T f_t(s)ds}$, in particular B(t, t) = 1.

HJM framework for the riskfree bond prices

Definition

- A bond price model is a quintuple $(B, f_0, \tilde{\alpha}, \tilde{\sigma}, X)$, where
 - the bank account B satisfies $B_t = e^{\int_0^t r_s ds}$, with short rate r,
 - X is a d-dimensional Itô-semimartingale,
 - $f_0: \mathbb{R}_+ \to \mathbb{R}$ is measurable and $\int_0^T |f_0(t)| dt < \infty$ for any $T \in \mathbb{R}_+$,
 - $(\omega, t, T) \mapsto \widetilde{\alpha}_t(T)(\omega)$ and $(\omega, t, T) \mapsto \widetilde{\sigma}_t(T)(\omega)$ are $\mathcal{P} \times \mathcal{B}(\mathbb{R}_+)$ measurable \mathbb{R} and \mathbb{R}^d -valued processes and satisfy certain integrability conditions,
 - the forward rate process $f_t(T)$ is defined by $f_t(T) = f_0(T) + \int_0^t \widetilde{\alpha}_s(T) ds + \int_0^t \widetilde{\sigma}_s(T) dX_s,$
 - the bond prices $\{(B(t, T))_{t \in [0,T]}, T \ge 0\}$ satisfy $B(t, T) = e^{-\int_t^T f_t(s)ds}$, in particular B(t, t) = 1.

An bond price model is called risk neutral if the discounted bond prices $\left\{ \left(\frac{B(t,T)}{B_t} \right)_{t \in [0,T]} \right\}$ are martingales.

HJM framework for the riskfree bond prices

Proposition (cf. J. Teichmann's presentation on the CNKK-approach) A bond price model can be identified with an HJM-type model $(Z, \eta_0, \alpha, \sigma, X)$ for the family of discounted bond prices $\left\{ \left(\frac{B(t,T)}{B_t} \right)_{t \in [0,T]} \right\}$ by setting $\eta_0 = -f_0$, $\alpha = -\tilde{\alpha}, \sigma = -\tilde{\sigma}$ (thus $\eta_t(t) = -f_t(T)$) and $Z_t = -\log B_t = -\int_0^t r_s ds$. Moreover, the following assertions are equivalent:

- The bond price model is risk neutral, i.e., $\left(\frac{B(t,T)}{B_t}\right)_{t \in [0,T]}$ are martingales for all $T \ge 0$.
- $\mathbb{E}\left[e^{Z_T}|\mathcal{F}_t\right] = e^{Z_t + \int_t^T \eta_t(s)ds} \Leftrightarrow \mathbb{E}\left[\frac{B_t}{B_T}|\mathcal{F}_t\right] = e^{-\int_t^T f_t(s)ds}.$

• The following conditions hold:

- martingale property of $\left(\exp\left(\int_{0}^{t}\left(-\int_{s}^{T}\widetilde{\sigma}_{s}(u)du\right)dX_{s}-\int_{0}^{t}\Psi_{s}^{X}\left(-\int_{s}^{T}\widetilde{\sigma}_{s}(u)du\right)ds\right)\right)_{t},$ Consistency condition: $\Psi_{t}^{Z}(1) = -r_{t} = -f_{t}(t),$ UNA drift condition: $\int_{0}^{T}\widetilde{\sigma}_{s}(z)dz$
- HJM drift condition: $\int_{t}^{T} \widetilde{\alpha}_{t}(s) ds = \Psi_{t}^{X}(-\int_{t}^{T} \widetilde{\sigma}_{t}(s) ds).$

Remark

- The introduction of a bank account is actually not necessary.
- One could also take the terminal bond $B(t, T^*)$ as numeraire. Then $\left(\frac{B(t,T)}{B(t,T^*)}\right)_{t\in[0,T]}$ should be (local) martingales for all $T \leq T^*$ under the T^* -forward measure.
- Similarly we get an HJM-type model $(Z, \eta_0, \alpha, \sigma, X)$ for the family $\left\{ \begin{pmatrix} B(t,T) \\ \overline{B(t,T^*)} \end{pmatrix}_{t \in [0,T]}, T \leq T^* \right\}$ by setting $\eta_0 = -f_0, \ \alpha = -\widetilde{\alpha}, \ \sigma = -\widetilde{\sigma}$ (thus $\eta_t(t) = -f_t(T)$) and

$$Z_t = -\log(B(t,T^*)) = \int_t^{T^*} f_t(s) ds.$$

• A similar drift and consistency condition assure the local martingale property of $\left(\frac{B(t,T)}{B(t,T^*)}\right)_{t\in[0,T]}$ under the T^* -forward measure.

Modeling the term structure of spreads

• $\mathcal{D} = \{\delta_1, \delta_2, \dots, \delta_m\}$: family of tenors for some $m \in \mathbb{N}$ with $\delta_1 < \delta_2 < \dots < \delta_m$

Modeling the term structure of spreads

- $\mathcal{D} = \{\delta_1, \delta_2, \dots, \delta_m\}$: family of tenors for some $m \in \mathbb{N}$ with $\delta_1 < \delta_2 < \dots < \delta_m$
- Aim: Model the term structure of multiplicative spreads between riskfree and risky forward prices $T \mapsto S^{\delta}(t, T)$ given by

$$S^{\delta_i}(t,T) = rac{1+\delta_i L_t(T,T+\delta_i)}{1+\delta_i L_t^D(T,T+\delta_i)}$$

for all $\delta_i \in \{\delta_1, \ldots, \delta_m\}$.

Modeling the term structure of spreads

- $\mathcal{D} = \{\delta_1, \delta_2, \dots, \delta_m\}$: family of tenors for some $m \in \mathbb{N}$ with $\delta_1 < \delta_2 < \dots < \delta_m$
- Aim: Model the term structure of multiplicative spreads between riskfree and risky forward prices $T \mapsto S^{\delta}(t, T)$ given by

$$\mathcal{S}^{\delta_i}(t,T) = rac{1+\delta_i \mathcal{L}_t(T,T+\delta_i)}{1+\delta_i \mathcal{L}_t^D(T,T+\delta_i)}$$

for all
$$\delta_i \in \{\delta_1, \ldots, \delta_m\}$$
.

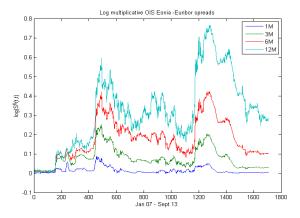
• HJM type models where

$$S^{\delta_i}(t,T) = e^{Z_t^{\delta_i} + \int_t^T \eta_t^i(s) ds}$$

are particularly suitable because we can model the observed log spot spreads $Z_t^{\delta_i} = \log(S^{\delta_i}(t, t))$ and the forward spread rates $\eta_t^i(\mathcal{T}) = \partial_{\mathcal{T}}(\log(S^{\delta_i}(t, \mathcal{T})))$ separately.

OIS Eonia-Euribor spread

• Logarithm of the multiplicative spread $S^{\delta}(t, t)$ from Jan. 2007 to September 2013 for $\delta = 1/12, 3/12, 6/12, 1$:



Modeling the log spot spreads

$$Z_t^{\delta_i} = u_i^\top Y_t,$$

where u_1, \ldots, u_m are some vector in \mathbb{R}^n obtained from PCA.

Modeling the log spot spreads

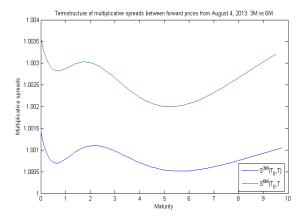
$$Z_t^{\delta_i} = u_i^\top Y_t,$$

where u_1, \ldots, u_m are some vector in \mathbb{R}^n obtained from PCA.

• Ordered spot spreads $1 \leq S^{\delta_1}(t,t) \leq \cdots \leq S^{\delta_m}(t,t)$ can be obtained by taking a process Y which takes values is some cone $C \subset \mathbb{R}^n$ and $u_i \in C^*$ such that $0 < u_1 \prec u_2 \prec \cdots \prec u_m$.

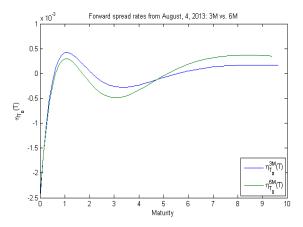
Term structure of multiplicative spreads

• Term structure of multiplicative spreads $S^{\delta}(T_0, T)$ for $\delta = 3/12, 6/12$ at $T_0 = 4.8.2013$



Forward spread rates η

• Forward spread rates $T \mapsto \eta_{T_0}(T)$ for $\delta = 3/12, 6/12$ at $T_0 = 4.8.2013$



- (B_t) : bank account
- B(t, T): riskfree bond prices
- $\frac{B(t,T)}{B_t}$: discounted bond prices are martingales

- (*B_t*): bank account
- B(t, T): riskfree bond prices
- $\frac{B(t,T)}{B_t}$: discounted bond prices are martingales

Lemma

For every $\delta \in \mathcal{D}$ and T > 0, $(S^{\delta}(t, T))_{t \in [0, T]}$ is a \mathbb{Q}^{T} -martingale, where \mathbb{Q}^{T} denotes the T-forward measure whose density process is given by $\frac{d\mathbb{Q}^{T}}{d\mathbb{Q}}|_{\mathcal{F}_{t}} = \frac{B(t, T)}{B_{t}B(0, T)}$.

- (*B_t*): bank account
- B(t, T): riskfree bond prices
- $\frac{B(t,T)}{B_t}$: discounted bond prices are martingales

Lemma

For every $\delta \in \mathcal{D}$ and T > 0, $(S^{\delta}(t, T))_{t \in [0, T]}$ is a \mathbb{Q}^{T} -martingale, where \mathbb{Q}^{T} denotes the T-forward measure whose density process is given by $\frac{d\mathbb{Q}^{T}}{d\mathbb{Q}}|_{\mathcal{F}_{t}} = \frac{B(t, T)}{B_{t}B(0, T)}$.

- In order to model $\{(S^{\delta_i}(t, T))_t, T \ge 0, \delta_i \in D\}$, the following conditions should thus be satisfied:
 - $(S^{\delta_i}(t, T))_{t \in [0, T]}$ are \mathbb{Q}^T -martingales,
 - $S^{\delta_i}(t,T) \ge 1$ for all $t \le T$ and T > 0,
 - $S^{\delta_1}(t,T) \leq \cdots \leq S^{\delta_m}(t,T)$ for all $t \leq T$ and T > 0.

• Since $S^{\delta_i}(t, T) = e^{Z_t^{\delta_i} + \int_t^T \eta_t^i(s)ds}$ the \mathbb{Q}^T -martingale property implies the conditional expectation hypothesis under \mathbb{Q}^T

$$S^{\delta_i}(t,T) = \mathbb{E}_{\mathbb{Q}^T}\left[e^{Z_T^{\delta_i}}|\mathcal{F}_t\right] = \mathbb{E}_{\mathbb{Q}^T}\left[e^{u_i^\top Y_T}|\mathcal{F}_t\right] = e^{u_i^\top Y_t + \int_t^T \eta_t^i(s)ds}.$$

 Since S^{δ_i}(t, T) = e^{Z_t^{δ_i} + ∫_t^T η_tⁱ(s)ds} the Q^T-martingale property implies the conditional expectation hypothesis under Q^T

$$S^{\delta_i}(t,T) = \mathbb{E}_{\mathbb{Q}^T}\left[e^{Z_T^{\delta_i}}|\mathcal{F}_t\right] = \mathbb{E}_{\mathbb{Q}^T}\left[e^{u_i^\top Y_T}|\mathcal{F}_t\right] = e^{u_i^\top Y_t + \int_t^T \eta_t^i(s)ds}.$$

• We automatically have $1 \leq S^{\delta_1}(t, T) \leq \cdots \leq S^{\delta_m}(t, T)$ for every tand $T \geq t$ if the process Y takes values is some cone $C \subset \mathbb{R}^n$ and $u_i \in C^*$ such that $0 < u_1 \prec u_2 \prec \cdots \prec u_m$, since

$$S^{\delta_i}(t,T) = \mathbb{E}_{\mathbb{Q}^T} \left[e^{u_i^\top Y} \middle| \mathcal{F}_t \right] \leq \mathbb{E}_{\mathbb{Q}^T} \left[e^{u_j^\top Y} \middle| \mathcal{F}_t \right] = S^{\delta_j}(t,T).$$

HJM-type multi-curve models

Definition

- Let the number of different tenors be $m = |\mathcal{D}|$. We call a model consisting of
 - an \mathbb{R}^{d+n+1} -valued semimartingale (X, Y, B),
 - vectors u_1, \ldots, u_m in \mathbb{R}^n ,
 - functions f_0 , $\eta_0^1, \ldots, \eta_0^m$,
 - Processes $\widetilde{\alpha}, \alpha^{1}, \ldots, \alpha^{m}$ and $\widetilde{\sigma}, \sigma^{1}, \ldots, \sigma^{m}$
 - a HJM-type multi-curve model for $\{(B(t, T))_{t \in [0, T]}, T \ge 0\}$ and $\{(S^{\delta}(t, T))_{t \in [0, T]}, T \ge 0, \delta \in D\}$ if
 - $(B, f_0, \widetilde{\alpha}, \widetilde{\sigma}, X)$ is a bond price model and
 - ▶ for every $i \in \{1, ..., m\}$, $(u_i^\top Y, \eta_0^i, \alpha^i, \sigma^i, X)$ is a HJM-type models for $\{(S^{\delta_i}(t, T)), T \ge 0\}$.

HJM-type multi-curve models

Definition

- Let the number of different tenors be $m = |\mathcal{D}|$. We call a model consisting of
 - ▶ an \mathbb{R}^{d+n+1} -valued semimartingale (X, Y, B),
 - vectors u_1, \ldots, u_m in \mathbb{R}^n ,
 - functions f_0 , $\eta_0^1, \ldots, \eta_0^m$,
 - Processes $\widetilde{\alpha}, \alpha^{1}, \ldots, \alpha^{m}$ and $\widetilde{\sigma}, \sigma^{1}, \ldots, \sigma^{m}$
 - a HJM-type multi-curve model for $\{(B(t, T))_{t \in [0,T]}, T \ge 0\}$ and $\{(S^{\delta}(t, T))_{t \in [0,T]}, T \ge 0, \delta \in \mathcal{D}\}$ if
 - $(B, f_0, \widetilde{\alpha}, \widetilde{\sigma}, X)$ is a bond price model and
 - For every *i* ∈ {1,...,*m*}, ($u_i^T Y$, η_0^i , α^i , σ^i , *X*) is a HJM-type models for {(*S*^{δ_i}(*t*, *T*)), *T* ≥ 0}.
- An HJM-type multi-curve model is called risk neutral if
 - for all T > 0, $(\frac{B(t,T)}{B_t})_t$ is a martingale and
 - for all $i \in \{1, ..., m\}$ and for all $T \ge 0$, $(S^{\delta_i}(t, T))_t$ is a \mathbb{Q}^T -martingale.

Multi-curve models - drift and consistency condition

Theorem

For a multi-curve model the following conditions are equivalent:

- The multi-curve model is risk neutral.
- The following conditional expectation hypotheses hold:

$$\mathbb{E}_{\mathbb{Q}}\left[\frac{B_t}{B_T}|\mathcal{F}_t\right] = e^{-\int_t^T f_t(s)ds}$$
$$\mathbb{E}_{\mathbb{Q}^T}\left[e^{u_i^\top Y_T}|\mathcal{F}_t\right] = e^{u_i^\top Y_t + \int_t^T \eta_t^i(s)ds}, \quad \text{for all } i \in \{1, \dots, m\}.$$

Multi-curve models - drift and consistency condition

Theorem (continued)

• The following conditions are satisfied:

martingale property (under
$$\mathbb{Q}$$
) of

$$\left(\exp\left(\int_{0}^{t}\left(-\int_{s}^{T}\widetilde{\sigma}_{s}(u)du\right)dX_{s}-\int_{0}^{t}\Psi_{s}^{X}\left(-\int_{s}^{T}\widetilde{\sigma}_{s}(u)du\right)ds\right)\right)_{t} \text{ and}$$

$$\left(\exp\left(u_{i}^{T}Y_{t}+\int_{0}^{t}\left(\int_{s}^{T}(\sigma_{s}^{i}(u)-\widetilde{\sigma}_{s}(u))du\right)dX_{s}+\right.\right.\right.$$

$$\left.-\int_{0}^{t}\Psi_{s}^{Y,X}\left(u_{i},\int_{s}^{T}(\sigma_{s}^{i}(u)-\widetilde{\sigma}_{s}(u))du\right)ds\right)\right)_{t},$$

Consistency conditions: $r_t = f_t(t)$ and $\Psi_t^Y(u_i) = \eta_{t-}^i(t)$. HJM drift conditions:

$$\int_{t}^{T} \widetilde{\alpha}_{t}(s) ds = \Psi_{t}^{X} \left(- \int_{t}^{T} \widetilde{\sigma}_{t}(s) ds \right)$$

$$\int_{t}^{T} \alpha_{t}^{i}(s) ds = \Psi_{t}^{Y}(u_{i}) - \Psi^{Y,X}\left(u_{i}, \int_{t}^{T} (\sigma_{t}^{i}(s) ds - \widetilde{\sigma}_{t}(s)) ds\right) + \\ + \Psi_{t}^{X}\left(-\int_{t}^{T} \widetilde{\sigma}_{t}(s) ds\right)$$

Aim: Specify a risk neutral multi-curve model via (f₀, ηⁱ₀, σ̃, σⁱ, X, Y) such that

- Aim: Specify a risk neutral multi-curve model via (f₀, ηⁱ₀, σ̃, σⁱ, X, Y) such that
 - Condition (iii) (martingale property, consistency and HJM drift condition) of the last theorem is satisfied,

- Aim: Specify a risk neutral multi-curve model via (f₀, ηⁱ₀, σ̃, σⁱ, X, Y) such that
 - Condition (iii) (martingale property, consistency and HJM drift condition) of the last theorem is satisfied,
 - ▶ the spreads are ordered $1 \le S^{\delta_1}(t, T) \le \cdots \le S^{\delta_m}(t, T)$ for every tand $T \ge t$ (without requiring that the forward spread curves $T \mapsto \eta_t^i(T)$ are ordered)

- Aim: Specify a risk neutral multi-curve model via (f₀, ηⁱ₀, σ̃, σⁱ, X, Y) such that
 - Condition (iii) (martingale property, consistency and HJM drift condition) of the last theorem is satisfied,
 - ▶ the spreads are ordered $1 \le S^{\delta_1}(t, T) \le \cdots \le S^{\delta_m}(t, T)$ for every tand $T \ge t$ (without requiring that the forward spread curves $T \mapsto \eta_t^i(T)$ are ordered)
- The second aim can be achieved by taking a process Y which takes values is some cone $C \subset \mathbb{R}^n$ and $u_i \in C^*$ such that

$$0 < u_1 \prec u_2 \prec \cdots \prec u_m,$$

- Aim: Specify a risk neutral multi-curve model via (f₀, ηⁱ₀, σ̃, σⁱ, X, Y) such that
 - Condition (iii) (martingale property, consistency and HJM drift condition) of the last theorem is satisfied,
 - ▶ the spreads are ordered $1 \le S^{\delta_1}(t, T) \le \cdots \le S^{\delta_m}(t, T)$ for every tand $T \ge t$ (without requiring that the forward spread curves $T \mapsto \eta_t^i(T)$ are ordered)
- The second aim can be achieved by taking a process Y which takes values is some cone $C \subset \mathbb{R}^n$ and $u_i \in C^*$ such that $0 < u_1 \prec u_2 \prec \cdots \prec u_m$,
- The more difficult part is to satisfy the consistency condition

$$\Psi_t^Y(u_i) = \eta_{t-}^i(t).$$

 $\bullet\,$ In order to specify the dynamics η^i we need to define the drift α^i as

$$\alpha_t^i(T) = -\partial_T \Psi^{Y,X}\left(u_i, \int_t^T (\sigma_t^i(s)ds - \widetilde{\sigma}_t(s))ds\right) + \partial_T \Psi_t^X\left(-\int_t^T \widetilde{\sigma}_t(s)ds\right)$$

 $\bullet\,$ In order to specify the dynamics η^i we need to define the drift α^i as

$$\alpha_t^i(T) = -\partial_T \Psi^{Y,X}\left(u_i, \int_t^T (\sigma_t^i(s)ds - \widetilde{\sigma}_t(s))ds\right) + \partial_T \Psi_t^X\left(-\int_t^T \widetilde{\sigma}_t(s)ds\right)$$

• For this we can decompose Y into its dependent part $Y^{||}$ relative to X and a locally independent part $Y^{\perp} = Y - Y^{||}$. To define α^i it is sufficient to specify only the dependent part $Y^{||}$ because

$$\Psi^{Y,X} = \Psi^{Y^{||},X} + \Psi^{Y^{\perp},0}$$

 $\bullet\,$ In order to specify the dynamics η^i we need to define the drift α^i as

$$\alpha_t^i(T) = -\partial_T \Psi^{Y,X}\left(u_i, \int_t^T (\sigma_t^i(s)ds - \widetilde{\sigma}_t(s))ds\right) + \partial_T \Psi_t^X\left(-\int_t^T \widetilde{\sigma}_t(s)ds\right)$$

• For this we can decompose Y into its dependent part $Y^{||}$ relative to X and a locally independent part $Y^{\perp} = Y - Y^{||}$. To define α^i it is sufficient to specify only the dependent part $Y^{||}$ because

$$\Psi^{Y,X} = \Psi^{Y^{||},X} + \Psi^{Y^{\perp},0}.$$

• Therefore we can specify $(\eta_0^i, \tilde{\sigma}, \sigma^i, X, Y^{||})$ such that $Y^{||}$ lies in C and $\left(\exp\left(u_i^\top Y_t^{||} + \int_0^t \left(\int_s^T (\sigma_s^i(u) - \tilde{\sigma}_s(u))du\right) dX_s + -\int_0^t \Psi_s^{Y^{||}, X} \left(u_i, \int_s^T (\sigma_s^i(u) - \tilde{\sigma}_s(u))du\right) ds\right)\right)_t$ is a martingale.

• Supposing existence and uniqueness for η^i , we then have to construct Y^{\perp} with state space *C*, locally independent of (Y^{\parallel}, X) such that

$$\Psi_t^{Y^{\perp}}(u_i) = \eta_t^i(t) - \Psi_t^{Y^{||}}(u_i).$$

for all *i*.

• Supposing existence and uniqueness for η^i , we then have to construct Y^{\perp} with state space *C*, locally independent of (Y^{\parallel}, X) such that

$$\Psi_t^{Y^{\perp}}(u_i) = \eta_t^i(t) - \Psi_t^{Y^{||}}(u_i).$$

for all *i*.

- Possible solutions:
 - If m = n, c^{Y[⊥]} and K^{Y[⊥]} could be fixed and the drift chosen accordingly ⇒ Problem: Y[⊥] should be C-valued.
 - If m > n, adjusting only the drift does not work any more.
 - Adjusting the compensator of the jumps allows for highest flexibility, however one has to find a way to guarantee that Y[⊥] ∈ C.

Existence of multi-curve models

- It is possible to construct multi-curve models such that all requirements of Condition (iii) (drift and consistency condition and martingale property) are satisfied. Thus the spreads S^{δ_i}(t, T) are Q^T martingales.
- Moreover, the process Y = Y^{||} + Y can be specified to take values in C, whence the spreads are ordered.

Definition of an affine Markov process

• V: *n*-dimensional Euclidean vector space with scalar product $\langle \cdot, \cdot \rangle$;

Definition of an affine Markov process

- V: *n*-dimensional Euclidean vector space with scalar product $\langle \cdot, \cdot \rangle$;
- D: closed subset of V

Model setup

Definition of an affine Markov process

- V: *n*-dimensional Euclidean vector space with scalar product $\langle \cdot, \cdot \rangle$;
- D: closed subset of V
- $\mathcal{U} = \{ u \in V + iV \mid e^{\langle u, x \rangle} \text{ is a bounded function on } D \};$

Definition of an affine Markov process

- V: n-dimensional Euclidean vector space with scalar product $\langle \cdot, \cdot \rangle$;
- D: closed subset of V
- $\mathcal{U} = \{ u \in V + iV \mid e^{\langle u, x \rangle} \text{ is a bounded function on } D \};$

Definition (Affine Markov process)

A time-homogeneous Markov process X relative to some filtration (\mathcal{F}_t) and with state space D is called affine if

- **③** it is stochastically continuous, that is, the transition kernels satisfy $\lim_{s\to t} p_s(x, \cdot) = p_t(x, \cdot)$ weakly on *D* for every $t \ge 0$ and $x \in D$, and
- ② its Fourier-Laplace transform has exponential-affine dependence on the initial state. This means that there exist functions φ : ℝ₊ × U → C and ψ : ℝ₊ × U → V + iV such that for all x ∈ D and (t, u) ∈ ℝ₊ × U

$$\mathbb{E}_{\mathsf{x}}\left[e^{\langle u, X_t\rangle}\right] = \int_D e^{\langle u, \xi\rangle} p_t(\mathsf{x}, d\xi) = e^{\phi(t, u) + \langle \psi(t, u), \mathsf{x} \rangle}.$$

Properties of affine processes

Theorem (Keller-Ressel, Teichmann, Schachermayer 2011; C. and Teichmann 2012)

Every affine process X is regular, that is, for every $u \in U$ the derivatives

$$F(u) := \frac{\partial \phi(t, u)}{\partial t} \bigg|_{t=0}, \qquad R(u) := \frac{\partial \psi(t, u)}{\partial t} \bigg|_{t=0}$$

exist and are continuous in u. Moreover, F and R are of Lévy Kinthchine form and ϕ and ψ satisfy the so-called generalized Riccati equations.

Properties of affine processes

Theorem (Keller-Ressel, Teichmann, Schachermayer 2011; C. and Teichmann 2012)

Every affine process X is regular, that is, for every $u \in U$ the derivatives

$$F(u) := \frac{\partial \phi(t, u)}{\partial t} \bigg|_{t=0}, \qquad R(u) := \frac{\partial \psi(t, u)}{\partial t} \bigg|_{t=0}$$

exist and are continuous in u. Moreover, F and R are of Lévy Kinthchine form and ϕ and ψ satisfy the so-called generalized Riccati equations.

Lemma

Consider an affine process (X, Y) on some mixed state space $D_1 \times D_2$ with scalar product $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ such that the characteristics of Y only depend on X. Then

$$\mathbb{E}\left[e^{\langle u, X_t \rangle_1 + \langle v, Y_t \rangle_2}\right] = e^{\phi(t, u, v) + \langle \psi(t, u, v), x \rangle_1 + \langle v, y \rangle_2}.$$

Affine multi-curve model

Definition

An affine multi-curve model is defined via

- an affine process (X, Y, Z) on some state space $D \subset \mathbb{R}^{d+n+1}$ satisfying certain exponential moment conditions with the property that the characteristics of (Y, Z)only depend on X, in particular $Z_t = -\int_0^t r_s ds = -\int_0^t l + \langle \lambda, X_s \rangle ds$ such that
- the bank account satisfies $B_t = e^{-Z_t} = e^{\int_0^t r_s ds}$,
- the bond prices satisfy

$$B(t,T) = \mathbb{E}\left[\frac{B_t}{B_T}\Big|\mathcal{F}_t\right] = \mathbb{E}\left[e^{Z_T - Z_t}|\mathcal{F}_t\right] = e^{\phi(T-t,0,0,1) + \langle \psi(T-t,0,0,1), X_t \rangle}$$

• for each *i*, the spreads $S^{\delta_i}(t, T)$ satisfy

$$S^{\delta_i}(t,T) := \frac{\mathbb{E}\left[e^{Z_T + u_i^\top Y_T} | \mathcal{F}_t\right]}{\mathbb{E}\left[e^{Z_T} | \mathcal{F}_t\right]}$$
$$= e^{u_i^\top Y_t + \phi(T-t,0,u_i,1) - \phi(T-t,0,0,1) + \langle \psi(T-t,0,u_i,1) - \psi(T-t,0,0,1), X_t \rangle}$$

Relation to HJM-type multi-curve models

Proposition

Every affine multi-curve model is a risk neutral HJM-type multi-curve model where

- the driving process is X,
- the bank account is given by $B_t = e^{-Z_t}$
- the log spot spread is given by $\log(S^{\delta_i}(t,t)) = u_i^\top Y_t$ and
- the forward rate and forward spread rates are given by

$$\begin{split} f_t(T) &= -F(\psi(T-t,0,0,1),0,1) - \langle R(\psi(T-t,0,0,1),0,1), X_t \rangle \\ \eta_t^i(T) &= F(\psi(T-t,0,u_i,1),u_i,1) - F(\psi(T-t,0,0,1),0,1) \\ &+ \langle R(\psi(T-t,0,u_i,1),u_i,1) - R(\psi(T-t,0,0,1),0,1), X_t \rangle \end{split}$$

Pricing of interest rate derivatives

• Pricing of FRA contracts, swaps and basis swaps amounts to compute riskfree bond prices and the following quantity

$$B(t,T)S^{\delta_i}(t,T) = \mathbb{E}_{\mathbb{Q}}[e^{u_i^\top Y_T + Z_T - Z_t} | \mathcal{F}_t]$$

= $e^{\phi(T-t,0,u_i,1) + \langle \psi(T-t,0,u_i,1), X_t \rangle - Z_t},$

which simply means solving the Riccati equations for ϕ and $\psi.$

Pricing of interest rate derivatives

• Pricing of FRA contracts, swaps and basis swaps amounts to compute riskfree bond prices and the following quantity

$$B(t,T)S^{\delta_i}(t,T) = \mathbb{E}_{\mathbb{Q}}[e^{u_i^\top Y_T + Z_T - Z_t} | \mathcal{F}_t]$$
$$= e^{\phi(T-t,0,u_i,1) + \langle \psi(T-t,0,u_i,1), X_t \rangle - Z_t}$$

which simply means solving the Riccati equations for ϕ and $\psi.$

• Pricing of caplets can be achieved via Fourier methods as for pricing put options in affine models.

Relation to other models

• Lognormal LIBOR market models

- Similarly as in the original BGM article, we can obtain a lognormal LIBOR market model for L_t(T, T + δ) within the above framework.
- This provides a theoretical justification in the multi-curve setting for the market practice to price caplets by means of Black's formula.

Relation to other models

• Lognormal LIBOR market models

- Similarly as in the original BGM article, we can obtain a lognormal LIBOR market model for L_t(T, T + δ) within the above framework.
- This provides a theoretical justification in the multi-curve setting for the market practice to price caplets by means of Black's formula.

• Multi-curve HJM models

The HJM multiple-curve models recently proposed by Crepey et al. and Moreni and Pallavicini can also be recovered within our framework.

• Our model approach is based on the

• Our model approach is based on the

• ... a (standard) HJM-model for the riskfree bonds,

• Our model approach is based on the

- ... a (standard) HJM-model for the riskfree bonds,
- ..an HJM-type model for multiplicative spreads between riskfree and risky forward prices

• Our model approach is based on the

- ... a (standard) HJM-model for the riskfree bonds,
- ..an HJM-type model for multiplicative spreads between riskfree and risky forward prices
- ... affine model specification as prototypical example, where pricing of interest rate derivatives can be achieved easily

• Our model approach is based on the

- ... a (standard) HJM-model for the riskfree bonds,
- ..an HJM-type model for multiplicative spreads between riskfree and risky forward prices
- ... affine model specification as prototypical example, where pricing of interest rate derivatives can be achieved easily

• Work in progress, Outlook

- Statistical analysis of the dependence and correlation structure between the different curves and spreads
- Calibration

• Thank you for your attention!